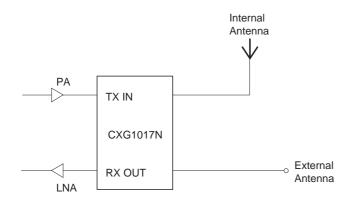


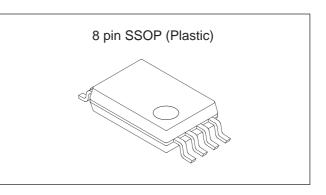
<For Europe and America>

GSM1800/1900 DPDT TX/RX Antenna Switch

Description

The CXG1017N is a high power DPDT switch suitable for Digital Cellular applications. This device is part of a growing family of MMIC Antenna switches for digital cellular and cordless radios. It uses the state-of-the-art Sony JFET process.


Features


- Positive voltage supply only
- Low insertion loss, typically 0.7dB at 33dBm input level
- Stable Characteristics over wide temperature range
- Fast switching-100ns Typical
- Low current consumption, 400µA typical at 5.5V
- 8 pin SSOP package (3.0 × 6.4mm)

Applications

- GSM1800 handportable
- GSM1900 handportable
- DECT basestation/handportable diversity antenna switching
- Other digital cellular and wireless local loop applications

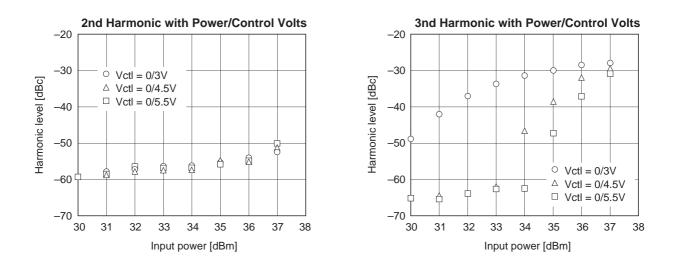
Typical Application

CXG1017N

ESD

As with other GaAs semiconductors, ESD precautions must be adhered to.

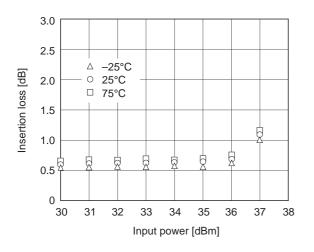
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.


Electrical Characteristics

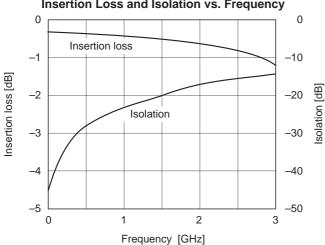
Measurement Conditions, unless otherwise stated: Vctl (L) = 0V, Vctl (H) = 5.5V, Pin = 33dBm GSM Burst (577 μ s pulse length with 8:1 Duty cycle), F = 1.75GHz. Temperature Range –25 to +75°C.

Parameter	Min.	Тур.	Max.	Unit
Insertion loss		0.7	0.95	dB
Isolation	14	16		dB
VSWR			1.5	
Switching time		100		ns
Harmonic levels		-56	-50	dBc
Control currents		400	800	μA
P0.1dB		34.5		dBm
P0.3dB		35.5		dBm
P0.1dB for Vctl (H) = 4.5V		34		dBm
P0.1dB for Vctl (H) = 3.0V		29		dBm

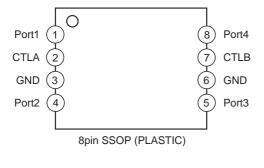
Control Voltage Selection, Vctl (H)


The choice of control voltage will determine the compression characteristic of the switch and the generation of harmonics. The table above indicates the sensitivity of P0.1dB to control voltage, whilst the graphs below indicate the sensitivity of harmonic levels:

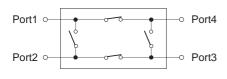
Compression Characteristics


Measurement Conditions: Vctl (L) = 0V, Vctl (H) = 5.5V, GSM Burst, F = 1.75GHz Temperature range -25 to +75°C.

Typical Characteristics over Temperature:

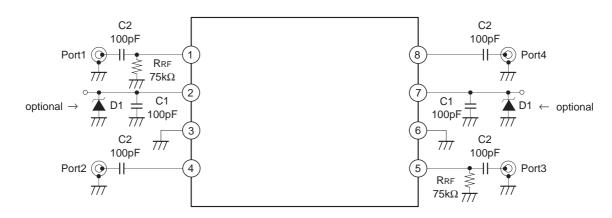

Frequency Characteristics

Measurement Conditions: Vctl (L) = 0V, Vctl (H) = 5.5V, Pin = 0dBm CW, T = 25°C


Insertion Loss and Isolation vs. Frequency

Schematic/Pinout

Pin No.	FUNCTION
1	RF PORT1
2	Ctl (A)
3	GROUND
4	RF PORT2
5	RF PORT3
6	GROUND
7	Ctl (B)
8	RF PORT4


Block Diagram/Truth Table

Vctla	Vctlb	
High	Low	Port1-Port2, Port3-Port4 ON Port2-Port3, Port4-Port1 OFF
Low	High	Port2-Port3, Port4-Port1 ON Port1-Port2, Port3-Port4 OFF

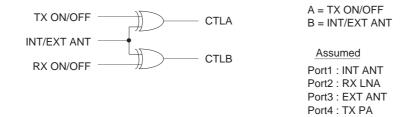
Note) Internal and External Antenna Connections should be diagonally opposite (1-3, 2-4).

External Circuitry

When using the CXG1017N, the following external components should be used:

- C1: This is used for signal line filtering 100pF is recommended.
- C2: This is used for RF De-coupling and must be used in all applications. 100pF is recommended.
- Rrf: This resistor is used to stabilize the dc operating point at high power levels. A value of $75k\Omega$ is recommended.
- D1: 6.2V Zenor diodes may be incorporated at the Control lines, as indicated, in order to give improved ESD performance if necessary.

ESD Precautions


As this is a GaAs MMIC, ESD precautions must be adhered to, as outlined in at standard Data Book. Please contact Sony if detailed ESD performance data is required.

Configuration of External Logic Circuitry

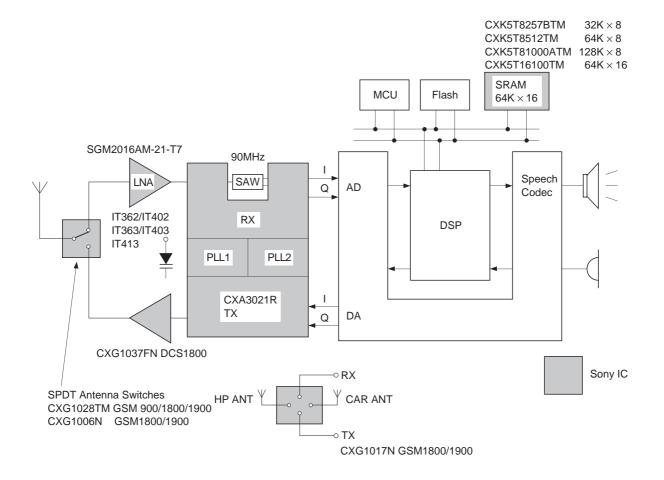
For most portable appplicaitons, the following logic states are normally available .:

- 1. TX ON/OFF
- 2. RX ON/OFF
- 3. INT/EXT ANT.

A simple Logic circuit, using EXOR gates may be used to drive the CXG1017N. The following is a suggested schematic:

Absolute Maximum Ratings (Ta =	25°C)
--------------------------------	-------

 Control voltage 	Vctl	7	V
 Operating temperature 	Topr	-30 to +85	°C
 Storage temperature 	Tstg	-65 to +150	°C
 Input Power 	Pin	37	dBm


Tape and Reel Information

This device is available in Tape and Reel. Order CXG1017N-T4

Reel Quantity: 1000 pieces/reel

Reel Dimensions: 245mm. There are detailed on Page 1-112 of the package manual 93.


Sony GSM Lineup

Α

Package Outline

Unit: mm

NOTE: Dimension "*" does not include mold protrusion.

SONY CODE	SSOP-8P-L01
EIAJ CODE	SSOP008-P-0044
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER / PALLADIUM PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.04g

+ 0.2 1.25 – 0.1

 \bigcirc

 6.4 ± 0.2

0.25

 0.1 ± 0.05

0° to 10°

0.1

 0.6 ± 0.15

(0.5)

DETAIL A